Monday, 16 August 2021

PSEUDOTHURMANNIA PICTETI

Pseudothurmannia is a genus of extinct cephalopods belonging to the subclass Ammonoidea and included in the family Crioceratitidae of the ammonitid superfamily Ancylocerataceae.

Ammonites have intricate and complex patterns on their shells called sutures. The suture patterns differ across species and tell us what time period the ammonite is from.

We can see from the suture patterns shown here and by comparing it to others that are similar that this fast-moving nektonic carnivore lived in the Cretaceous, from the Hauterivian to the Barremian.

Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.

Catching a fish with your hands is no easy feat, as I'm sure you know. Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. 

Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column. They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.

Shells of Pseudothurmannia can reach a diameter of about 4–12 centimetres (1.6–4.7 in). They show flat or slightly convex sides, with dense ribs and a subquadrate whorl section.

We find fossils of Pseudothurmannia in Cretaceous outcrops in Antarctica, Czechoslovakia, France, Hungary, Italy, Japan, Morocco, Spain, Russia and the United States. The specimen you see here is in the collection of the deeply awesome Manuel Peña Nieto from Córdoba, Spain and is from the Lower Cretaceous of Mallorca.

Saturday, 14 August 2021

SEA ANEMONES: CNIDARIA

These colourful beauties are sea anemones. They are familiar inhabitants of rocky shores and coral reefs around the world — with some of their brethren found at very low depths in our oceans. They are one of the wonderful examples of the diversity that radiated out of the Cambrian Explosion.

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea anemones are known as 'mis'ma̱t̕sa. 

These beautiful predatory animals are a common site in tide pools all along the Pacific Coast. They form a large part of many special memories of exploring the tide pools along Storey's Beach on the east side of Vancouver Island as a child. 

Touching their soft tentacles is hypnotic and highly entertaining but our human skin is coated in oils and bacteria that may damage these delicate organisms. 

We sometimes see them turn up in First Nation's art — particularly in association with Kumugwe' or the Copper-Maker, Chief of the undersea world and the one to thank for the rising and ebbing of the tides.

At first glance, they look like beautiful and delicate marine flowers. If you have discovered them in tidepools, you will know that they retract or pull into themselves with the lightest touch. These would-be flowers are predatory marine animals of the order Actiniaria that have graced our oceans for over half a billion years. 

They are named after anemones — Anemonastrum, a genus of flowering plants in the family Ranunculaceae — because of their colourful flower-like appearance. Sea anemones are classified in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. 

As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra. Jellyfish have a complex life cycle that includes both sexual and asexual phases, with the medusa being the sexual stage in most instances. 

A typical sea anemone is a single polyp attached to a hard surface by its base, but some species live in soft sediment and a few float near the surface of the water. The polyp has a columnar trunk topped by an oral disc with a ring of sticky tentacles that fold in towards its central mouth. If they have stung and paralyzed a tasty snack, it is pulled towards the gaping mouth to be consumed. 

The tentacles can be retracted or pulled back inside the body cavity or stretched out and expanded to catch passing prey. They are armed with cnidocytes or stinging cells. In many species, nourishment comes from a symbiotic relationship with single-celled dinoflagellates — zooxanthellae or with green algae, zoochlorellae, that live within the cells. Some species of sea anemone live in association with hermit crabs, small fish or other animals to their mutual benefit.

Most actinarians are sessile — that is, they live attached to rocks or other substrates and do not move, or move only very slowly by contractions of the pedal disk. 

A number of anemones burrow into sand, and a few can even swim short distances, by bending the column back and forth or by "flapping" their tentacles. In all, there are about 1000 species of sea anemone in the world's oceans — including those who live amongst the mythic sea lions that form the posts and beams of Kumugwe''s undersea home.

Sea anemones breed by releasing sperm and eggs through their mouth into the surrounding ocean. The fertilized eggs develop into wee planula larvae that live as tiny planktonic bits floating in the sea. Eventually, they settle on the seafloor and develop directly into juvenile polyps. Sea anemones can also breed asexually. They do this by breaking in half or into smaller pieces that regenerate into polyps.

We sometimes see these beauties kept in saltwater aquariums. I can understand the appeal but it comes with a price. The global trade in marine ornamentals threatens our lovely sea anemone populations. 

Most Actiniaria do not form hard parts that can be recognized as fossils, but a few fossils of sea anemones have been found. The bag-like — almost sea cucumber-like — Mackenzia, from the Middle Cambrian, Stephen Formation in the Canadian Rockies of British Columbia and Alberta, is the oldest fossil identified as a sea anemone. These ancient sea anemones attached themselves to hard surfaces, such as brachiopod shells in a similar fashion to their modern sessile cousins. 

Mackenzia costalis, Walcott 1911
Fourteen specimens of Mackenzia costalis are known from the Greater Phyllopod bed, where they make up less than <0.1% of the fossil community. Mackenzia was originally described by Charles Walcott in 1911 — but as a holothurian echinoderm, which was a reasonable assumption at the time. Once additional specimens had been found and studied, Mackenzia costalis was reclassified as a cnidarian and the great grandparent of our modern sea anemones.

Some fossil sea anemones have also been found from the Lower Cambrian of China. The new find lends support to genetic data that suggests anthozoans — anemones, corals, octocorals and their kin — were one the first Cnidarian groups to diversify. We will likely find more of these rare fossils over time and perhaps get a better view of their long lineage.

Photo: Charles Doolittle Walcott - Charles D. Walcott: Middle Cambrian Holothurians and Medusae. Smithsonian Miscellaneous Collections Volume 57, Number 3 (Publication 2011). City of Washington. Published by the Smithsonian Institution. June 13, 1911. 

References:  

Caron, Jean-Bernard; Jackson, Donald A. (October 2006). "Taphonomy of the Greater Phyllopod Bed community, Burgess Shale". PALAIOS. 21 (5): 451–65. doi:10.2110/palo.2003.P05-070R. JSTOR 20173022.

 Durham, J. W. (1974). "Systematic Position of Eldonia ludwigi Walcott". Journal of Paleontology. 48 (4): 750–755. JSTOR 1303225.

Conway Morris, S. (1993). "Ediacaran-like fossils in Cambrian Burgess Shale–type faunas of North America". Palaeontology. 36 (31–0239): 593–635.


Friday, 13 August 2021

THE CALL OF THE WILD: ANTARCTIC FUR SEALS

This little cutie is an Antarctic fur seal pup. He and his Mamma belong to the species Arctocephalus gazella — pinnipeds that live in dense colonies alongside King Penguins. 

These two call the South Georgia islands home, as do 95% of the world's fur seal population.  

Though a wee pup, he can already recognize her voice from all the other lovely Mammas in his busy, noisy colony. Little ones left on the rocky shores while their mother is out hunting will raise their heads and listen for their mother's voice. They can distinguish its vocal pitch over the loud calls of all the other busy Mammas and penguins of the colony. If you look closely, you can see his wee little ears. Antarctic fur seals, unlike some other seal species, have visible ears.  

Seal pups stay with their mother, relying on her lactation milk to help them fatten up and grow healthy and strong. For the first four months of their lives, their mother will feed them on her rich milk, then head out to sea to forage for food. 

Once she is back, she will call out to him and then give him a good sniff upon their reunion, the final confirmation for both parties that the right match has been made. The interaction between mother and pup is tender and heartbreakingly sweet to watch. She only gives birth to one pup (two is rare) each October to December. Pups are born with a sheen of fur and grow their waterproof fur during their first months of life. 

When this little fellow grows up, he will dine on fish, birds (including his penguin pals), squid and krill. Krill are small crustaceans of the order Euphausiacea that look like tiny shrimp. They look similar and are both crustaceans but shrimp hail from the suborder Natantia, order Decapoda and their hearts are located in their heads.

Krill live in all the world's oceans and sadly for them, they make a handy and tasty snack. They form an important part of the oceanic food chain. The krill feed on phytoplankton and zooplankton and then larger animals feed on the krill. 

Krill is Norwegian for small fry of fish. And they are small, indeed — but also tasty, nutritious and easy to catch. Once this little pinniped pup is out hunting on his own, krill will make up the majority of his adult diet. He will need our help to make sure he gets a steady supply. Krill are one of the casualties of ocean acidification from climate change. Hopefully, we will do better so they can, too.

Thursday, 12 August 2021

PLAYFUL WATERBABIES: PORPOISE

Dall's Porpoise
These delightfully friendly and super smart fellows are Dall's porpoise. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, a blowhole is known as a ka̱'was, whether on a dolphin (porpoise) or whale and a porpoise is known as a k̓ulut̕a

In the Pacific Northwest, we see many of their kind — the shy, blunt-nosed harbour porpoise, the social and herd-minded Pacific white-sided dolphin and the showy and social Dall's porpoise.  

Of these, the Dall's porpoise is a particular favourite. These speedy muscular black and white showboats like to ride the bow waves of passing boats — something they clearly enjoy and a thrill for everyone on board the vessel. If you slow down, they will often whisk away, but give them a chance to race you and they may stay with you all afternoon. 

Harbour porpoises are the complete opposite. You are much more likely to see their solid black bodies and wee fin skimming through the waves across the bay as they try to avoid you entirely. Harbour porpoise prefer quiet sheltered shorelines, often exploring solo or in small groups of two or three. 

We sometimes see these lovely marine mammals represented in the art of the First Nations in the Pacific Northwest, particularly along the coast of British Columbia. You will know them from their rather rectangular artistic depiction with a pronounced snout and lacking teeth (though they have them) used to portray killer whales or orca. 

As a group, even considering the shy Harbour porpoise, these marine mammals are social and playful. Humpback whales are fond of them and you will sometimes see them hanging out altogether in the bays and inlets or near the shore. 

They are quite vocal, making lots of distinctive and interesting noises in the water. They squeak, squawk and use body language — leaping from the water while snapping their jaws and slapping their tails on the surface. They love to blow bubbles, will swim right up to you for a kiss and cuddle. 

Each individual has a signature sound, a whistle that is uniquely their own. They use these whistles to tell one of their friends and family members from another.

Porpoise are marine mammals that live in our world's oceans. If it is salty and cold, you can be pretty sure they are there. They breathe air at the surface, similar to humans, using their lungs and inhaling and exhaling through a blowhole at the top of their heads instead of through their snouts. 



Wednesday, 11 August 2021

TRACKING WHALES WITH BARNACLES

We can trace the lineage of barnacles back to the Middle Cambrian. That is half a billion years of data to sift through. 

If you divide that timeline in half yet again, we begin to understand barnacles and their relationship to other sea-dwelling creatures — with a lens that reveals ancient migration patterns.

Barnacles are in the infraclass Cirripedia in the class Maxillopoda. They are marine arthropods related to crabs and lobsters. 

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, barnacles are known as k̕wit̕a̱'a and broken barnacle shells are known as t̕sut̕su'ma. Unless scraped off, barnacles live on one single sturdy object for their entire lives — 8 to 20 years — while chowing down on tasty snacks like plankton and algae they absorb from the surrounding water.

One of the most interesting aha moments in palaeontology came from the study of 270,000 million-year-old k̕wit̕a̱'as. These sticky wee crustaceans have enabled us to trace the course of ancient whale migration. 

University of California Berkeley doctoral student Larry Taylor published some clever findings on how fossil barnacles hitched a ride on the backs of humpback and grey whales millions of years ago and used this data to reconstruct the migrations of ancient whale populations.

The barnacles record details about the whales’ yearly travels in the fossil record. By following this barnacle trail, Taylor et al. were able to reconstruct migration routes of whales from millions of years in the past.

Today, Humpback whales come from both the Southern Hemisphere (July to October with over 2,000 whales) and the Northern Hemisphere (December to March about 450 whales along with Central America) to Panama (and Costa Rica). They undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters.

One surprise find is that the coast of Panama has been a meeting ground for humpback whales going back at least 270,000 years. To see how the barnacles have travelled through the migration routes of ancient whales, the team used oxygen isotope ratios in barnacle shells and measured how they changed over time with ocean conditions. 

Did the whale migrate to warmer breeding grounds or colder feeding grounds? Barnacles retain this information even after they fall off the whale, sink to the ocean bottom, and become fossils. As a result, the travels of fossilized barnacles can serve as a proxy for the journeys of whales in the distant past.

Barnacles can play an important role in estimating paleo-water depths. The degree of disarticulation of fossils suggests the distance they have been transported, and since many species have narrow ranges of water depths, it can be assumed that the animals lived in shallow water and broke up as they were washed down-slope. 

Barnacles have few predators. Their one nemesis is the whelk. It seems that catching a lifetime's ride on a passing whale would have extended their ability to feed on plankton in a variety of settings whelk-free and likely live longer than they might have cemented to something closer to the seafloor.

Tuesday, 10 August 2021

HUMPBACK WHALES: MEGAPTERA NOVAENGLIAE

Look deep into the knowing eye of this magnificent one. He is a Humpback whale, Megaptera novaeangliae, a species of baleen whale for whom I hold a special place in my heart. 

Baleens are toothless whales who feed on plankton and other wee oceanic tasties that they consume through their baleens, a specialised filter of flexible keratin plates that frame their mouth and fit within their robust jaws.

Baleen whales, the mysticetes, split from toothed whales, the Odontoceti, around 34 million years ago. The split allowed our toothless friends to enjoy a new feeding niche and make their way in a sea with limited food resources. There are fifteen species of baleen whales who inhabit all major oceans. Their number include our humbacks, grays, right whales and the massive blue whale. Their territory runs as a wide band running from the Antarctic ice edge to 81°N latitude. These filter feeders

In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, whales are known as g̱wa̱'ya̱m. Both the California grey and the Humpback whale live on the coast. Only a small number of individuals in First Nation society had the right to harpoon a whale. It was generally only the Chief who was bestowed this great honour. Humpback whales like to feed close to shore and enter the local inlets. Around Vancouver Island and along the coast of British Columbia, this made them a welcome food source as the long days of winter passed into Spring.

Humpback whales are rorquals, members of the Balaenopteridae family that includes the blue, fin, Bryde's, sei and minke whales. The rorquals are believed to have diverged from the other families of the suborder Mysticeti during the middle Miocene. 

While cetaceans were historically thought to have descended from mesonychids— which would place them outside the order Artiodactyla— molecular evidence supports them as a clade of even-toed ungulates — our dear Artiodactyla. 

It is one of the larger rorqual species, with adults ranging in length from 12–16 m (39–52 ft) and weighing around 25–30 metric tons (28–33 short tons). The humpback has a distinctive body shape, with long pectoral fins and a knobbly head. It is known for breaching and other distinctive surface behaviours, making it popular with whale watchers.

Both male and female humpback whales vocalize, but only males produce the long, loud, complex "song" for which the species is famous. Males produce a complex soulful song lasting 10 to 20 minutes, which they repeat for hours at a time. I imagine Gregorian Monks vocalizing their chant with each individual melody strengthening and complimenting that of their peers. All the males in a group produce the same song, which differed in each season. Its purpose is not clear, though it may help induce estrus in females and bonding amongst the males.

Humpback Whale, Megaptera novaeangliae
Found in oceans and seas around the world, humpback whales typically migrate up to 25,000 km (16,000 mi) each year. 

They feed in polar waters and migrate to tropical or subtropical waters to breed and give birth, fasting and living off their fat reserves. Their diet consists mostly of krill and small fish. 

Humpbacks have a diverse repertoire of feeding methods, including the bubble net technique.

Humpbacks are a friendly species that interact with other cetaceans such as bottlenose dolphins. They are also friendly and oddly protective of humans. You may recall hearing about an incident off the Cook Islands a few years back. In September of 2017, Nan Hauser was snorkeling and ran into a tiger shark. Two adult humpback whales rushed to her aid, blocking the shark from reaching her and pushing her back towards the shore. We could learn a thing or two from their kindness. We have not been as good to them as they have been to us.

Like other large whales, the humpback was a tasty and profitable target for the whaling industry. My grandfather and uncle participated in that industry out of Coal Harbour on northern Vancouver Island back in the 1950s. 

Six whaling stations operated on the coast of British Columbia between 1905 and 1976. Two of these stations were located at Haida Gwaii, one at Rose Harbour and the other at Naden Harbour. Over 9,400 large whales were taken from the waters around Haida Gwaii. The catch included blue whales, fin whales, sei whales, humpback whales, sperm whales and right whales. In the early years of the century, primarily humpback whales were taken. In later years, fin whales and sperm whales dominated the catch. 

Whales were hunted off South Moresby in Haida Gwaii, on the north side of Holberg Inlet in the Quatsino Sound region. It was the norm at the time and a way to make a living, especially for those who had hoped to work in the local coal mine but lost their employment when it shut down. 

While my First Nations relatives hunted whales in small numbers, my Norwegian relatives participated in the hunt on such a scale that it nearly led to the extinction of our lovely Humpbacks before the process was banned back in the 1960s. The Coal Harbour Whaling Station closed in 1967. Once it had closed, my grandfather Einar Eikanger took to fishing and my uncle Harry lost his life when he slipped and fell over the side of the boat. He was crushed between the hull and a Humpback in rough seas. The Gods will have their sacrifice.

Humpback populations have partially recovered to build their population up to 80,000 animals worldwide since the 1960s but entanglement in fishing gear, collisions with ships, and noise pollution continue to negatively impact the species. So be kind if you see them. Turn your engine off and see if you can hear their soulful cries echoing in the water.

I did up a video on Humpback Whales over on YouTube so you could see them in all their majesty. Here is the link: https://youtu.be/_Vbta7kQNoM

Sunday, 8 August 2021

CONLINOCERAS TARRANTENSE

Previously Calycoceras Tarrantense, this ammonite is now called Conlinoceras tarrantense after J.P. Conlin, a famous early 20th-century fossil collector from Texas, USA.

Ammonite expert Bill Cobban used this collection to describe many Texas Cretaceous ammonites species including this species from Tarrant County, Arlington, Texas.

He was a surveyor by training and kept incredibly detailed notes on the context of his fossils.

Conlin donated his collection to the USGS and we have learned much by studying it along with other specimens from the Lone Star State. Almost a quarter of Texas is covered by Cretaceous strata, much of it fossiliferous. If we stepped back 95 million years, the world and what we now call Texas was a very different place.

95 million years ago, during the Late Cretaceous, a shallow seaway separated North America into separate eastern and western landmasses. We have a pretty complete picture in the fossil record of the western groups of species but relatively little in comparison to their cohorts in the east.

At the time this fellow was swimming our ancient seas, he was sharing the Earth with carnivorous dinosaurs, duck-billed dinosaurs, mammals, crocodilians, turtles, a variety of amphibians, prehistoric bony fish, oddly prolific sea cucumbers, various invertebrates and plants. Many of these sites are just being written up now and contain new species just being discovered.

During the Late Cretaceous Period, a shallow seaway separated North America into separate eastern and western landmasses. The Woodbine Formation in Texas preserves a rare fossil record of this time for the east, but many of these fossils are isolated and incomplete, making interpretations more difficult. Preliminary excavations at the Arlington Archosaur Site (AAS) are providing hints at a more complete ecosystem, preserving similar patterns of change to what we see in the west.

The Arlington Archosaur site contains an extraordinary diversity, abundance, and quality of fossil material, preserving one of the most complete terrestrial ecosystems known for this time period and area.

These outcrops and the fossils they contain have a lot to tell us about Late Cretaceous life in the east. Over 2200 individual specimens have been found belonging to numerous groups including carnivorous dinosaurs, duck-billed dinosaurs, crocodilians, turtles, mammals, amphibians, sharks, bony fish, invertebrates, and plants.

Many of the fossils found here represent brand new species and studying these fossils will help to establish the geographic and environmental forces that shaped Cretaceous ecosystems in North America by providing a necessary comparison to the fossil record of the west.

Thursday, 5 August 2021

VOAY ROBUSTUS

This big beastie is Voay robustus. You likely met him first as Crocodylus‭ (‬C.‭ ‬robustus‭) from his original naming by Grandidier and Vaillant in‭ 1872. 

Looking more closely at his remains revealed that he is nearer in design to the dwarf crocodile Osteolaemus. 

The type series cannot be identified, but the original description includes details consistent with known specimens that almost certainly pertain to the same species. 

It had a prominent triangular ‘horn’ on the posterolateral corner of each squamosal; near-exclusion of the nasals from the external naris; constricted supratemporal fenestral rims; a dorsoventrally deep snout; a constricted external mandibular fenestra in which the surangular–angular suture emerges from the posterior rather than posteroventral margin; and robust limb and limb-girdle elements. 

It shares with Osteolaemus, and with several extinct crocodylids from the Neogene of Africa, a depressed surface of the pterygoid around the internal choana forming a choanal ‘neck’. It cannot be referred to as Crocodylus and a new praenomen, Voay, was established for its reception. 

In 2007, Christopher‭ ‬A.‭ ‬Brochu created a new genus, Voay, and this fellow became Voay robustus. Christopher published his work in the Zoological Journal of the Linnean Society in Volume 150, Issue 4, August 2007, Pages 835-863. Voay lived into the Holocene of Madagasgar, perhaps meeting some of our relatives 2,000 years ago. Voay was replaced by Crocodylus niloticus in Madagascar as they moved into the niche left by Voay's ultimate demise. 

https://doi.org/10.1111/j.1096-3642.2007.00315.x

Wednesday, 4 August 2021

WHALER


 

Monday, 2 August 2021

INKY BEAUTY: AMMONITE OF PONGO DE MANSERICHE

This inky beauty is Prolyelliceras ulrichi (Knechtel, 1947) a fast-moving nektonic carnivorous ammonite from Cretaceous lithified, black, carbonaceous limestone outcrops in the Pongo de Manseriche gorge in northwest Peru. 

If you look closely, you can see that this specimen shows a pathology, a slight deviation to the side of the siphonal of the ammonite. We see Prolyelliceras from the Albian to Middle Albian from five localities in Peru.

The canyons of the Amazon River system in the eastern ranges of the Andes of Peru are known by the Indian name pongo

The most famous of these is the Pongo de Manseriche, cut by the Marañon River through the eastern range of the Andes, where it emerges from the cordillera into the flat terrane of the Amazon Basin. The fossil exposures here are best explored by boat. The reality of the collecting is similar to the imagined. I was chatting with Betty Franklin, VIPS, about this. They float along and pick up amazing specimen after amazing specimen. When the water rises, the ammonites are aided in their erosion out of the cliffs.  

The Pongo de Manseriche lies nearly 500 miles upstream from Iquitos, and consequently nearly 3,000 miles above the mouth of the Amazon River. It is situated in the heart of the montaña, in a vast region the ownership of which has long been in dispute between Peru and Ecuador, but over which neither country exercises any police or other governmental control. There is an ancient tradition of the indigenous people of the vicinity that one of their gods descended the Marañón and another ascended the Amazon to communicate with him. Together they opened the pass called the Pongo de Manseriche.

Reference: M. M. Knechtel. 1947. Cephalopoda. In: Mesozoic fossils of the Peruvian Andes, Johns Hopkins University Studies in Geology 15:81-139

W. J. Kennedy and H. C. Klinger. 2008. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Lyelliceratinae Spath, 1921. African Natural History 4:57-111. The beauty you see here is in the collection of the deeply awesome José Juárez Ruiz.

Sunday, 1 August 2021

FOSSILIZED SEA URCHIN: AM'DA'MA

This lovely little biscuit is a Holectypus sea urchin from 120 million-year-old deposits from the Lagniro Formation of Madagascar.

The specimen you see here is in the collections of my beautiful friend Ileana. She and I were blessed to meet in China many years ago and formed an unbreakable bond that happens so few times in one's life. 

Holectypus are a genus of extinct echinoids related to modern sea urchins and sand dollars. They were abundant from the Jurassic to the Cretaceous (between 200 million and 65.5 million years ago).

This specimen is typical of Holectypus with his delicate five-star pattern adorning a slightly rounded test and flattened bottom. The specimen has been polished and was harvested both for its scientific and aesthetic value. 

I have many wonderful memories of collecting their modern cousins that live on the north end of Vancouver Island and along the beaches of Balaklava Island. In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, sea urchins are known as a̱m'da̱'ma and it is this name that I hear in my head when I think of them.

In echinoids, the skeleton is almost always made up of tightly interlocking plates that form a rigid structure or test — in contrast with the more flexible skeletal arrangements of starfish, brittle stars, and sea cucumbers. Test shapes range from nearly globular, as in some sea urchins, to highly flattened, as in sand dollars. 

Sea Urchin Detail
Living echinoids are covered with spines, which are movable and anchored in sockets in the test. These spines may be long and prominent, as in typical sea urchins and most have lovely raised patterns on their surface. 

In sand dollars and heart urchins, however, the spines are very short and form an almost felt-like covering. The mouth of most echinoids is provided with five hard teeth arranged in a circle, forming an apparatus known as Aristotle’s lantern.

Echinoids are classified by the symmetry of the test, the number and arrangement of plate rows making up the test, and the number and arrangement of respiratory pore rows called petals. Echinoids are divided into two subgroups: regular echinoids, with nearly perfect pentameral (five-part) symmetry; and irregular echinoids with altered symmetry.

Because most echinoids have rigid tests, their ability to fossilize is greater than that of more delicate echinoderms such as starfish, and they are common fossils in many deposits. The oldest echinoids belong to an extinct regular taxon called the Echinocystitoidea. 

They first appeared in the fossil record in the Late Ordovician. Cidaroids or pencil urchins appear in the Mississippian (Early Carboniferous) and were the only echinoids to survive the mass extinction at the Permo-Triassic boundary. Echinoids did not become particularly diverse until well after the Permo-Triassic mass extinction event, evolving the diverse forms we find them in today. 

True sea urchins first appear in the Late Triassic, cassiduloids in the Jurassic, and spatangoids or heart urchins in the Cretaceous. Sand dollars, a common and diverse group today, do not make an appearance in the fossil record until the Paleocene. They remain one of my favourite echinoderms and stand tall amongst the most pleasing of the invertebrates.

Saturday, 31 July 2021

AMMONITE TRACE FOSSIL

This is a particularly fetching trace fossil of an ammonite.

Trace fossils or ichnofossils are burrows, footprints, tracks or even faeces left behind by plants and animals that lived long ago. 

Animals may have scurried across a muddy exposure or sea bottom, perhaps eaten a tasty meal then pooped it out — leaving behind clues to how they lived, what they ate and what the environment was like at the time. These are wonderfully informative clues to our ancient world.

Friday, 30 July 2021

OPABINIA REGALIS

Opabinia regalis is an extinct stem-group arthropod found in the Greater Phyllopod Bed, Middle Cambrian Burgess Shale Lagerstätte of British Columbia, Canada. 

These marine arthropods flourished from 505 million years ago to 487 million years ago.

Charles Doolittle Walcott found nine partially complete fossils of Opabinia regalis and a few of what he classified as Opabinia media, that he published in 1912. 

The bizarre arthropod's name is derived from the Opabin pass between Mount Hungabee and Mount Biddle, southeast of Lake O'Hara, British Columbia, Canada. 

In 1966–1967, Harry B. Whittington found a rather good specimen which he published in 1975. He provided a detailed description based on a very thorough dissection of some specimens and photographs of these specimens lit from a variety of angles. Harry was a very thorough fellow.

But he was still ridiculed. Opabinia looked so strange that the audience at the first presentation of Whittington's analysis laughed.

Earth's ancient seas teemed with new life 541 - 485 Million Years Ago. The Cambrian Explosion had arrived. Weird and wonderful life forms like Hallucigenia and Anomalocaris are found in the fossil record giving us a peek at ancient life half a billion years ago.