Tuesday, 17 March 2020

CENOMANIAN-TURONIAN IMPACT

Ichthyosaur and Plesiosaur by Edouard Riou, 1863
During the early Triassic period, ichthyosaurs evolved from a group of unidentified land reptiles that returned to the sea. They were particularly abundant in the later Triassic and early Jurassic periods before being replaced as a premier aquatic predator by another marine reptilian group, the Plesiosauria, in the later Jurassic and Cretaceous periods.

In the Late Cretaceous, ichthyosaurs were hard hit by the Cenomanian-Turonian anoxic event. As the deepest benthos layers of the seas became anoxic, poisoned by hydrogen sulphide, deep water marine life died off. This caused a cascade that wreaked havoc all the way up the food chain. At the end of that chain were our mighty predaceous marine reptiles.

Bounty turned to scarcity and a race for survival began. The ichthyosaurs lost that race as the last of their lineage became extinct. It may have been their conservative evolution as a genus when faced with a need for adaptation to the world in which they found themselves and/or being outcompeted by early mosasaurs.

Sunday, 15 March 2020

CONFOUNDING CONFUCIUSORNIS

Confuciusornis was about the size of a modern pigeon, with a total length of 50 centimetres (1.6 feet) and a wingspan of up to 70 cm (2.3 ft). Its body weight has been estimated to have been as much as 1.5 kilograms (3.3 lb), or less than 0.2 kg (0.44 lb). Confuciusornis feducciai was about a third longer than average specimens of Confuciusornis sanctus.

Confuciusornis is an interesting species as it shows a mix of basal and derived traits. It was more advanced or derived than Archaeopteryx in possessing a short tail with a pygostyle — a bone formed from a series of short, fused tail vertebrae — and a bony sternum or breastbone, but more basal or "primitive" than modern birds in retaining large claws on the forelimbs, having a primitive skull with a closed eye-socket, and a relatively small breastbone.

At first, the number of basal characteristics was exaggerated: Hou assumed in 1995 that a long tail was present and mistook grooves in the jaw bones for small degenerated teeth. I suppose we see what we want to see and our expectations colour our vision.

Confuciusornis sanctus, Cincinnati Museum of Natural History and Science
The skull morphology of Confuciusornis has been difficult to determine. Many of the specimens are crushed and deformed but we can piece some of it together.

Their skulls were near triangular in side view, and the toothless beak was robust and pointed. The front of the jaws had deep neurovascular foramina and grooves, associated with the keratinous rhamphotheca — horn-covered beak.

The skull was rather robust, with deep jaws, especially the mandible. The tomial crest of the upper jaw — bony support for the jaw's cutting edge — was straight for its entire length. The premaxillae —front bones of the upper jaw — were fused together for most of the front half of the snout, but were separated at the tip by a V-shaped notch. The frontal processes that projected hindwards from the premaxillae were thin and extended above the orbits (eye openings) like in modern birds, but unlike Archaeopteryx and other primitive birds without pygostyles, where these processes end in front of the orbits. The maxilla (the second large bone of the upper jaw) and premaxilla articulated by an oblique suture, and the maxilla had an extensive palatal shelf. The nasal bone was smaller than in most birds and had a slender process that directed down towards the maxilla.

The orbit was large, round, and contained sclerotic plates — the bony support inside the eye. A crescent-shaped element that formed the front wall of the orbit may be an ethmoidolacrimal complex similar to that of pigeons, but the identity of these bones is unclear due to bad preservation, and the fact that this region is very variable in modern birds. The external nares, bony nostrils, were near triangular and positioned far from the tip of the snout. The borders of the nostrils were formed by the premaxillae above, the maxilla below, and the nasal wall at the back.

Birds: Living Dinosaurs
Few specimens preserve the sutures of the braincase, but one specimen shows that the frontoparietal suture crossed the skull just behind the postorbital process and the hindmost wall of the orbit.

This was similar to Archaeopteryx and Enaliornis, whereas it curves back and crosses the skull roof much farther behind in modern birds, making the frontal bone of Confuciusornis small compared to those of modern birds.

A prominent supraorbital flange formed the upper border of the orbit and continued as the postorbital process, which had prominent crests that projected outwards to the sides, forming an expansion of the orbit's rim.

The squamosal bone was fully incorporated into the braincase wall, making its exact borders impossible to determine, which is also true for adult modern birds.

Various interpretations have been proposed of the morphology and identity of the bones in the temporal region behind the orbits, but it may not be resolvable with the available fossils. Confuciusornis was considered the first known bird with an ancestral diapsid skull — with two temporal fenestrae on each side of the skull — in the late 1990s, but in 2018, Elzanowski and colleagues concluded that the configuration seen in the temporal region of confuciusornithids was autapomorphic — a unique trait that evolved secondarily rather than having been retained from a primitive condition — for their group.

Victoria Crowned Pidgeon, Goura victoria
The quadrate bone and the back end of the jugal bar were bound in a complex scaffolding that connected the squamosal bone with the lower end of the postorbital process. This scaffolding consisted of two bony bridges, the temporal bar and the orbitozygomatic junction, which gave the appearance of the temporal opening being divided similarly to diapsid skulls, though this structure is comparable to bridges over the temporary fossa in modern birds.

The mandible, lower jaw, is one of the best-preserved parts of the skull. It was robust, especially at the front third of its length. The tomial crest was straight for its entire length, and a notch indented the sharp tip of the mandible.

The mandible was spear-shaped when viewed from the side due to its lower margin slanting downwards and back from its tip for the front third of its length — the jaw was also deepest at a point one third from the tip.

The symphyseal part — where the two halves of the lower jaw connected — of the dentary was very robust. The lower margin formed an angle at the level of the front margin of the nasal foramen, which indicates how far back the rhamphotheca of the beak extended.

The dentary had three processes that extended backwards into other bones placed further back in the mandible. The articular bone at the back of the mandible was completely fused with the surangular and prearticular bones. The mandible extended hindwards beyond the cotyla — which connected with the condyle of the upper jaw — and this part was therefore similar to a retroarticular process as seen in other taxa. The surangular enclosed two mandibular fenestrae. The hindmost part of the surangular had a small foramen placed in the same position as similar openings in the mandibles of non-bird theropods and modern birds. The splenial bone was three-pronged — as in some modern birds, but unlike the simple splenial of Archaeopteryx — and its lower margin followed the lower margin of the mandible. There were large rostral mandibular fenestra and a small, rounded caudal fenestra behind it.

Though only two specimens preserve parts of the beak's keratinous covering, these show that there would have been differences between species not seen in the skeleton. The holotype of C. dui preserves the outline of an upwards curving beak which sharply tapers towards its tip, while a C. sanctus specimen has an upper margin that is almost straight and a tip that appears to be slightly hooked downwards.

Photo One: Zhiheng Li, Zhonghe Zhou, Julia A. Clarke - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198078, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=78911418

Photo Two: James St. John, Ohio State University, Newark - https://www.flickr.com/photos/jsjgeology/15236217920/, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=36907383

Saturday, 14 March 2020

BIRDS OF THE JEHOL BIOTA

In November 1993, Chinese paleontologists Hou Lianhai and Hu Yoaming, of the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) in Beijing received a call from an excited local fossil collector.

He claimed to have quite a remarkable specimen on his hands. The team visited Zhang He at his home in Jinzhou, or Chinchow, a coastal prefecture-level city in central-west Liaoning province

Zhang showed them a spectacular fossil bird specimen he'd recently purchased at a local flea market. Very little was known about the specimen but it was clearly important and the team was hopeful more of this paleo goodness might turn up.

They didn't have that long to wait. A month after his visit to Zhang, Hou learned about a second specimen discovered by a local farmer, Yang Yushan. Things were looking up. Best of all, he learned that both specimens were likely from the same locality in Shangyuan, Beipiao. This was not a one-off discovery or an amazing but anonymous find. With two specimens to compare, the locality determined, the possibility of an interesting publication and career advancement would be a reality.

In 1995, the two specimens, as well as a third, were formally described as a new genus and species, Confuciusornis sanctus, by Hou and colleagues. The generic name combines the philosopher Confucius with a Greek ὄρνις, (ornis), "bird". The specific name means "holy one" in Latin and is a translation of Chinese 圣贤, shèngxián, "sage", again in reference to Confucius.

The first discovered specimen was designated the holotype (as you do) and catalogued under the specimen number IVPP V10918; it comprises a partial skeleton with skull and parts of the forelimb.

Of the other two skeletons, one (paratype, IVPP V10895) comprises a complete pelvis and hind limb, and the other (paratype, IVPP V10919–10925) a fragmentary hind limb together with six feather impressions attached to both sides of the tibia or shin bone.

All was well until those reading the journal articles realized that the two paratype specimens only comprise bones that were unknown from the holotype. An oversight, likely by design, but this lack of overlap between the specimens made their referral to the species speculative. The lack of overlap also gave a wide margin for error in the naming of additional, albeit hopeful, new species names — names that would later need to be amended. Luckily, the discovery of a veritable treasure trove of well-preserved specimens shortly after confirmed that the specimens indeed represented a single species.

Together with the early mammal Zhangheotherium, which was discovered about the same time, Confuciusornis was considered the most remarkable fossil discovery of the Jehol biota. If you're not in the paleo loop, the Jehol biota of northeastern China has unearthed some of the most important Mesozoic bird specimens worldwide over the past two decades.

It has also given us another fossil-rich Lagerstätte that includes a wonderful mix of advanced and ancient species. My speculation is that northeast Asia was isolated for part of the Jurassic by the Turgai Sea that separated Europe from Asia at that time. The fossils at Jehol are numerous and exceptionally well preserved. Think of the Cambrian goodies at Burgess or the Altmühltal Formation, Jurassic Konservat-Lagerstätte at Solnhofen. Quite remarkably, fully articulated skeletons, soft tissues, colour patterns, stomach contents, and twigs with leaves and flowers still attached, can be found within the Jehol biota.

A beautifully preserved Archaeopteryx
In the late 1990s, Confuciusornis was considered both the oldest beaked bird as well as the most primitive bird after Archaeopteryx. It was also considered to be only slightly younger than Archaeopteryx. 

Yixian Formation, the rock unit where most Confuciusornis specimens have been found, was thought to be of Late Jurassic (Tithonian) age at the time.

Although two bird genera, Sinornis and Cathayornis, had already described from the Jehol biota back in 1992, these were based on fragmentary remains and stem from the younger Jiufotang Formation. At the time, the Jiufotang was thought to be Early Cretaceous. Both formations have since been dated to the Lower Cretaceous — Barremian to Aptian — 131–120 million years ago.

In 1995, local farmers began digging for fossils near the village of Sihetun, Beipiao, in what would become one of the most productive localities of the Jehol biota. The then largely unknown site is truly world-class. Large-scale professional excavations at this single locality have been carried out by the IVPP from 1997 onwards. Not one, not two, but several hundred specimens of Confuciusornis have now been unearthed from here. Many additional sites producing fossils of the Jehol biota have been recognized since, distributed over a large region including Liaoning, Hebei, and Inner Mongolia.

Due to the great abundance, preservation, and commercial value of the fossils, excavations by local farmers produced an unusually high number of fossils. Although some of these fossils have been added to the collections of Chinese research institutions, more have been smuggled out of the country.

In 1999, it was estimated that the National Geological Museum of China in Beijing housed nearly a hundred (100) specimens of Confuciusornis, and in 2010, the Shandong Tianyu Museum of Nature was reported to possess five hundred and thirty-six (536) specimens. While it is illegal to export them, the majority of specimens are still held privately and thus are not available for research. I see them on social media and occasionally they come up for sale on eBay.

At one time forty individuals were discovered on a surface of about 100 m2. This unusual bone bed was likely the result of an entire flock of birds being simultaneously killed by ash, heat or poisonous gas following the volcanic eruptions that caused the tuff stone in which the fossils were found to be deposited as lake sediments. An avian death bed is highly unusual. Very sad for our feathered friends but grateful for what has been revealed by this rare event.

Notes: Confuciusornis chuonzhous was named by Hou in 1997 based on specimen IVPP V10919, originally a paratype of Confuciusornis sanctus. The specific name refers to Chuanzhou, an ancient name for Beipiao. Confuciusornis chuonzhous is now generally considered synonymous with Confuciusornis sanctus.

Confuciusornis suniae, named by Hou in the same 1997 publication, was based on specimen IVPP V11308. The specific name honours Madam Sun, the wife of Shikuan Liang who donated the fossil to the IVPP. Confuciusornis suniae is now usually considered synonymous with Confuciusornis sanctus.

Reference: Zhou, Z; Hou, L. (1998). "Confuciusornis and the early evolution of birds". Vertebrata PalAsiatica. 36 (2): 136–146.

Zhou, Z. (2006). "Evolutionary radiation of the Jehol Biota: chronological and ecological perspectives". Geological Journal. 41 (3–4): 377–393. doi:10.1002/gj.1045.

Friday, 13 March 2020

CALAMOPLEURUS OF BRAZIL

This well-preserved fossil fish skull is from Calamopleurus (Agassiz, 1841), an extinct genus of bony fishes related to the heavily armoured ray-finned gars.

They are fossil relics, the sole surviving species of the order Amiiformes. Although bowfins are highly evolved, they are often referred to as primitive fishes and living fossils as they retain many of the morphologic characteristics of their ancestors.

This specimen was found in Lower Cretaceous outcrops of the Santana Formation in the Araripe Basin UNESCO Global Geopark. The Santana Formation of north-east Brazil contains one of the most important Mesozoic fossil Konservat Lagerstatten on Gondwana (Maisey, 1991; Martill, 1993, 1997, 2001; Kellner, 2002; Fara et al., 2005). The formation crops out on the flanks of the Chapada do Araripe in southern Ceara´, western Pernambuco and a small part of eastern Piaui in the north-eastern Brazilian Caatinga. It forms part of a heterogeneous assemblage of spectacularly fossiliferous rocks of Cretaceous age (Gardner, 1841; Brito, 1984; Maisey, 1991; Martill, 1993).

Two formations within the basin are well-known as Konservat Lagerstatten; the Nova Olinda Member of the Crato Formation lies a few tens of metres below the Santana Formation, and both have contributed considerably to our knowledge and understanding of Gondwanan Cretaceous palaeobiotas (Martill, 1988, 1993; Wenz and Brito, 1990; Maisey, 1991, 1993; and many references herein). Only the age of the Romualdo Member of the Santana Formation, a dominantly silty shale sequence that includes the highly fossiliferous carbonate concretion-bearing unit, is considered here.

Although the Santana Formation concretions have been famous for their enclosed fossils, especially fishes, for over 150 years, in more recent times they have become known for a diversity of dinosaur and pterosaur remains in an excellent state of preservation (Martill, 1998; Martill and Unwin, 1989; Kellner, 1996a,b; Frey et al., 2003a,b) comparable with, and sometimes exceeding, that of the Jurassic Solnhofen Limestone of Bavaria (Barthel et al., 1990), especially in their three-dimensionality. Photo and collection of David Murphy.

References: Martill, David M. The age of the Cretaceous Santana Formation fossil Konservat Lagerstatten of north-east Brazil: a historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota, Cretaceous Research 28 (2007) 895-920.

Thursday, 12 March 2020

THEROPODS OF A FEATHER

Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton.

These modern dinosaurs live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. There are about ten thousand living species, more than half of which are passerine, or "perching" birds.

Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds.

Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Best of all, birds are feathered theropod dinosaurs, and constitute the only living dinosaurs. Based on fossil and biological evidence, most scientists accept that birds are a specialized subgroup of theropod dinosaurs, and more specifically, they are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, amongst others. As palaeontologists discover more theropods closely related to birds, the previously clear distinction between non-birds and birds has become a bit muddy.

Recent discoveries in the Liaoning Province of northeast China, which include many small theropod feathered dinosaurs — and some excellent fakes — contribute to this ambiguity. Still, other fossil specimens found here shed a light on the evolution of Aves. Confuciusornis sanctus, an Early Cretaceous bird from the Yixian and Jiufotang Formations of China is the oldest known bird to have a beak.

Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, telling us that the loss of teeth occurred convergently in Confuciusornis and living birds.

Confuciusornis sanctus, Cretaceous Bird from China, 125 mya
The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.

Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features which may have enabled them to glide or fly. The most basal deinonychosaurs were wee little things. This evidence raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both. Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, tummy contents from recent avialan studies suggest that the first avialans were omnivores. Even more intriguing...

Avialae or "bird wings" are a clade of flying dinosaurs containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds (Aves) than to deinonychosaurs, though alternative definitions are occasionally bantered back and forth.

Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan which may have had the capability of powered flight. However, several older avialans are known from the Late Jurassic Tiaojishan Formation of China, dating to about 160 million years ago.

The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. Archaeopteryx was the first fossil to clearly display both traditional reptilian characteristics — teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.

Unlikely yet true, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans — whose members include Archaeopteryx — which first appeared about 160 million years ago in China.
DNA evidence tells us that modern birds — Neornithes — evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

In birds, the brain, especially the telencephalon, is remarkably developed, both in relative volume and complexity. Unlike most early‐branching sauropsids, the adults of birds and other archosaurs have a well‐ossified neurocranium. In contrast to most of their reptilian relatives, but similar to what we see in mammals, bird brains fit closely to the endocranial cavity so that major external features are reflected in the endocasts. What you see on the inside is what you see on the outside.

This makes birds an excellent group for palaeoneurological investigations. The first observation of the brain in a long‐extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off.

Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend.

Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and the neurosciences.

Reference: Cau, Andrea; Brougham, Tom; Naish, Darren (2015). "The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?". PeerJ. 3: e1032. doi:10.7717/peerj.1032. PMC 4476167. PMID 26157616.

Reference: Ivanov, M., Hrdlickova, S. & Gregorova, R. (2001) The Complete Encyclopedia of Fossils. Rebo Publishers, Netherlands. p. 312

Photo: By Tommy from Arad - Confuciusornis; FunkMonk, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=24115307


Monday, 9 March 2020

SALTRIO THEROPOD

In the summer of 1996, Angelo Zanella, an avocational fossil collector and active collaborator at the Museo di Storia Naturale di Milano (MSNM) spotted some intriguing fossil bone sticking out of a large block of rock while hunting for ammonites in the Salnova marble quarry.

The quarry is in the Alpine foothills, at the Swiss–Italian border near Saltrio. Saltrio is about 80 km north of Milan in the province of Varese, Lombardy, Italy.

Zanella reported the bones to the MSNM, which arranged a paleontological expedition to the site. The research was difficult because the explosives used for industrial quarrying had blown up the fossil-bearing layer and had broken it into hundreds of pieces.

The Saltrio quarry has been active since the 15th century as one of the finest sites of marble production, and the “Saltrio Stone” provides high-quality building materials for many famous Italian monuments  — the Scala Opera House in Milan and the Mole Antonelliana in Turin. They actively use dynamite to extract the marble. Great for the workers who are not required to manually break-up the massive pieces. Less so for the fossils. The bones from the Saltrio theropod were blown to bits just prior to Zanella's discovery then had to be pieced back together.

Three years later, after 1,800 h of chemical preparation in the Laboratory of the MSNM, 132 remains were extracted from three main blocks. Although fragmentary, jaw fragments, one tooth, rib remains, pectoral and limb bones were analyzed and found to be that of a large theropod dinosaur.

The Saltrio theropod (MSNM V3664) became popular by the name, Saltriosauro, and so it was reported (Dal Sasso, 2001a) and preliminarily described (Dal Sasso, 2001b, 2004).

Pictured above: selected elements used in the diagnosis of Saltriovenator zanellai n. gen. n. sp. Right humerus in medial (A), frontal (B) and distal (C) views; (D) left scapula, medial view; (E) right scapular glenoid and coracoid, lateral view; (F) furcula, ventral view; tooth, labial (G) and apical (H) views; (I) left humerus, medial view; right second metacarpal in dorsal (J), lateral (L) and distal (N) views; first phalanx of the right second digit in dorsal (K), lateral (M) and proximal (O) views; (P–T) right third digit in proximal, dorsal and lateral views; (U) right distal tarsal IV, proximal view; third right metatarsal in proximal (V) and frontal (X) views; second right metatarsal, proximal (W) and frontal (Y) views; (Z) reconstructed skeleton showing identified elements (red). Abbreviations as in text, asterisks mark autapomorphic traits. Scale bars: 10 cm in (A)–(E), (I), and (U)–(Y); two cm in (F), and (J)–(T); one cm in (G).

Photos by G. Bindellini, C. Dal Sasso and M. Zilioli; drawing by M. Auditore. - https://peerj.com/articles/5976/

Sunday, 8 March 2020

ANEMONEFISH NURSERY

Anemonefish colonies usually consist of the reproductive male and female and a few male juveniles, which help tend the colony.

Although multiple males cohabit an environment with a single female, polygamy does not occur and only the adult pair exhibits reproductive behaviour. If the female dies, the social hierarchy shifts with the breeding male exhibiting protandrous sex reversal to become the breeding female.

The largest juvenile then becomes the new breeding male after a period of rapid growth. The existence of protandry in anemonefish may rest on the case that nonbreeders modulate their phenotype in a way that causes breeders to tolerate them. This strategy prevents conflict by reducing competition between males for one female. For example, by purposefully modifying their growth rate to remain small and submissive, the juveniles in a colony present no threat to the fitness of the adult male, thereby protecting themselves from being evicted by the dominant fish.

The reproductive cycle of anemonefish is often correlated with the lunar cycle. Rates of spawning for anemonefish peak around the first and third quarters of the moon. The timing of this spawn means that the eggs hatch around the full moon or new moon periods. One explanation for this lunar clock is that spring tides produce the highest tides during full or new moons. Nocturnal hatching during high tide may reduce predation by allowing for a greater capacity for escape. Namely, the stronger currents and greater water volume during high tide protect the hatchlings by effectively sweeping them to safety. Before spawning, anemonefish exhibit increased rates of anemone and substrate biting, which help prepare and clean the nest for the spawn.

In terms of parental care, male anemonefish are often the caretakers of eggs. Before making the clutch, the parents often clear an oval-shaped clutch varying in diameter for the spawn. Fecundity, or reproductive rate, of the females, usually ranges from 600 to 1500 eggs depending on her size. In contrast to most animal species, the female-only occasionally takes responsibility for the eggs, with males expending most of the time and effort. Male anemonefish care for their eggs by fanning and guarding them for 6 to 10 days until they hatch. In general, eggs develop more rapidly in a clutch when males fan properly, and fanning represents a crucial mechanism of successfully developing eggs.

This suggests that males can control the success of hatching an egg clutch by investing different amounts of time and energy towards the eggs. For example, a male could choose to fan less in times of scarcity or fan more in times of abundance. Furthermore, males display increased alertness when guarding more valuable broods, or eggs in which paternity was guaranteed. Females, though, display generally less preference for parental behavior than males. All these suggest that males have increased parental investment towards the eggs compared to females.

Saturday, 7 March 2020

CLOWN FISH: SYMBIOSIS

The colourful wee fellows you see here are Clown Fish. They have an unusual relationship with sea anemones. Clownfish or anemonefish are fishes from the subfamily Amphiprioninae in the family Pomacentridae. Thirty species are recognized: one in the genus Premnas, while the remaining are in the genus Amphiprion.

In the wild, they all form symbiotic mutualisms with sea anemones, each providing benefits to the other.

The individual species are generally highly host-specific, and especially the genera Heteractis and Stichodactyla, and the species Entacmaea quadricolor are frequent anemonefish partners.

The sea anemone protects the anemonefish from predators, as well as providing food through the scraps left from the anemone's meals and occasional dead anemone tentacles, and functions as a safe nest site. In return, the anemonefish defends the anemone from its predators and parasites.

The anemone also picks up nutrients from the anemonefish's excrement. The nitrogen excreted from anemonefish increases the number of algae incorporated into the tissue of their hosts, which aids the anemone in tissue growth and regeneration.

The activity of the anemonefish results in greater water circulation around the sea anemone, and it has been suggested that their bright colouring might lure small fish to the anemone, which then catches them. Studies on anemonefish have found that they alter the flow of water around sea anemone tentacles by certain behaviours and movements such as "wedging" and "switching". Aeration of the host anemone tentacles allows for benefits to the metabolism of both partners, mainly by increasing anemone body size and both anemonefish and anemone respiration.

Friday, 6 March 2020

SEA ANEMONE NURSERY

Sea anemones are familiar inhabitants of rocky shores and coral reefs around the world; other species can be found at very low depths indeed. Most of the soft-bodied anthozoans known as "sea anemones" are classified in the Actinaria.

Most actinarians are sessile; that is, they live attached to rocks or other substrates and do not move, or move only very slowly by contractions of the pedal disk. A number of anemones burrow into sand, and a few can even swim short distances, by bending the column back and forth or by "flapping" their tentacles. In all, there are about 1000 species of sea anemone in the world's oceans.

Sea anemones breed by liberating sperm and eggs through their mouth into the sea. The fertilized eggs develop into planula larvae which, after being planktonic for a while, settle on the seabed and develop directly into juvenile polyps. Sea anemones can also breed asexually, by breaking in half or into smaller pieces which regenerate into polyps.

They are sometimes kept in reef aquariums; the global trade in marine ornamentals is expanding and threatens sea anemone populations in some localities, as the trade depends on collection from the wild. Most Actiniaria do not form hard parts that can be recognized as fossils, but a few fossils of sea anemones do exist; Mackenzia, from the Stephen Formation, Middle Cambrian Burgess Shale of Canada, is the oldest fossil identified as a sea anemone.

Some fossil sea anemones have also been found from the Lower Cambrian of China. The new find lends support to genetic data that suggests anthozoans — anemones, corals, octocorals and their kin — were one the first Cnidarian groups to diversify.

Reference:  Conway Morris, S. (1993). "Ediacaran-like fossils in Cambrian Burgess Shale–type faunas of North America". Palaeontology. 36 (31–0239): 593–635.

Thursday, 5 March 2020

SEA ANEMONES: MARINE PREDATORS

Sea Anenome on Coral Reef
Sea anemones are a group of predatory marine animals in the order Actiniaria. They are named after the anemone, a terrestrial flowering plant because of the colourful appearance of so many of these lovelies.

Sea anemones are in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra.

Unlike jellyfish, sea anemones do not have a medusa stage in their life cycle. A typical sea anemone is a single polyp attached to a hard surface by its base, but some species live in soft sediment and a few float near the surface of the water. The polyp has a columnar trunk topped by an oral disc with a ring of tentacles and a central mouth.

The tentacles can be retracted inside the body cavity or expanded to catch passing prey. They are armed with cnidocytes (stinging cells). In many species, additional nourishment comes from a symbiotic relationship with single-celled dinoflagellates, zooxanthellae or with green algae, zoochlorellae, that live within the cells. Some species of sea anemone live in association with hermit crabs, small fish or other animals to their mutual benefit.

Wednesday, 4 March 2020

SEXUAL DIMORPHISM

Despite the differences between these two ammonites, both represent the same species, Macroscaphites yvani. The difference you see here is caused by sexual dimorphism. The larger of these is the female macroconch and the smaller specimen is the male of the species. These beauties are in the collection of the deeply awesome José Juárez Ruiz.

Monday, 2 March 2020

NOTOCHORDS AND SPINAL COLUMNS

Having a backbone or spinal column is what sets apart you, me and almost 70,000 species on this big blue planet.

So which lucky ducks evolved one? Well, ducks for one. Warm-blooded birds and mammals cheerfully claim those bragging rights. They're joined by our cold-blooded, ectothermic friends, the fish, amphibians and reptiles. All these diverse lovelies share this characteristic.

And whether they now live at sea or on land, all of these lineages evolved from a marine organism somewhere down the line, then went on to develop a notochord and spinal column. Notochords are flexible rods that run down the length of chordates and vertebrates. They are handy adaptations for muscle attachment, helping with signalling and coordinating the development of the embryonic stage. The cells from the notochord play a key role in the development of the central nervous system and the formation of motor neurons and sensory cells. Alas, we often take our evolution for granted.

Let's take a moment to appreciate just how marvellous this evolutionary gift is and what it allows us to do. Your backbone gives your body structure, holds up that heavy skull of yours and connects your tasty brain to your body and organs. Eating, walking, fishing, hunting, your morning yoga class, are all made possible because of this adaptation. Pick pretty near anything you love to do and it is only possible because of your blessed spine. And it sets us apart from our invertebrate friends.

Arturia nautiloid, Olympic Peninsula
While seventy thousand may seem like a large number, it represents less than three to five percent of all described animal species. The rest is made up of the whopping 97%'ers, our dear invertebrates who include the arthropods (insects, arachnids, crustaceans, and myriapods), mollusks (our dear chitons, snails, bivalves, squid, and octopus), annelids (the often misunderstood earthworms and leeches), and cnidarians (our beautiful hydras, jellyfish, sea anemones, and corals).

You'll notice that many of our invertebrate friends occur as tasty snacks. Having a backbone provides a supreme advantage to your placement in the food chain. Not always, as you may include fish and game on your menu. But generally, having a backbone means you're more likely to be holding the menu versus being listed as an appetizer. So, enjoy your Sunday 'downward dog' and thank your backbone for the magical gift it is.