Thursday, 27 August 2020

DOUVILLEICERAS MAMMILLATUM

Some lovely examples of Douvilleiceras mammillatum (Schlotheim, 1813), ammonites from the Lower Cretaceous (Middle-Lower Albian) Douvilliceras inequinodum zone of Ambarimaninga, Mahajanga Province, Madagascar.

The genus Douvilleiceras range from Middle to Late Cretaceous and can be found in Asia, Africa, Europe and North and South America. 

We have beautiful examples in the early to mid-Albian from the archipelago of Haida Gwaii in British Columbia. Joseph F. Whiteaves was the first to recognize the genus from Haida Gwaii when he was looking over the early collections of James Richardson and George Dawson. 

The beauties you see here measure 6cm to 10cm. The larger of the two is begging to be prepped. Let's hope he goes all the way to the centre.

Wednesday, 26 August 2020

STROMATOLITES IN CROSS SECTION

Stromatolites are a major constituent of the fossil record of the first forms of life on earth. They peaked about 1.25 billion years ago and subsequently declined in abundance and diversity so that by the start of the Cambrian they had fallen to 20% of their peak. 

The most widely supported explanation is that stromatolite builders fell victim to grazing creatures — the Cambrian substrate revolution — implying that complex organisms were common over a billion years ago. Another possible culprit are the protozoans. It is possible that foraminifera were responsible for the decline.

Proterozoic stromatolite microfossils (preserved by permineralization in silica) include cyanobacteria and possibly some forms of the eukaryote chlorophytes — green algae. One genus of stromatolite very common in the geologic record is Collenia.

The connection between grazer and stromatolite abundance is well documented in the younger Ordovician evolutionary radiation; stromatolite abundance also increased after the end-Ordovician and end-Permian extinctions decimated marine animals, falling back to earlier levels as marine animals recovered. Fluctuations in metazoan population and diversity may not have been the only factor in the reduction in stromatolite abundance. Factors such as the chemistry of the environment may have been responsible for changes.


Tuesday, 25 August 2020

WEE BABY FOSSIL OCTOPUS

Look at this adorable one! It is a wee baby fossil octopus. This specimen is a particularly exquisite example of Keuppia levante, an extinct genus of octopus that swam our ancient seas. 

Keuppia is in the family Palaeoctopodidae and one of the earliest representatives of the order Octopoda. These marine cuties are in the class Cephalopoda making them relatives of our modern squid and cuttlefish.

There are two species of KeuppiaKeuppia hyperbolaris and Keuppia levante — both of which we find as fossils. We find their remains, along with those of the genus Styletoctopus, in Cretaceous-age Hâqel and Hjoula localities in Lebanon. 

For many years, Palaeoctopus newboldi (Woodward, 1896) from the Santonian limestones at Sâhel Aalma, Lebanon, was the only known pre‐Cenozoic coleoid cephalopod believed to have an unambiguous stem‐lineage representative of Octobrachia Fioroni. 

With the unearthing of some extraordinary specimens with exquisite soft‐part preservation in the Lebanon limestones, our understanding of ancient octopus morphology has blossomed. 

The specimens are from the sub‐lithographical limestones of Hâqel and Hâdjoula, in north‐west Lebanon. These localities are about 15 km apart, 45 km away from Beirut and 15 km away from the coastal city of Jbail. The cutie you see here was collected earlier this year & is about 5 cm long.

Monday, 24 August 2020

STROMATOLITES: RECORDS OF ANCIENT LIFE

Stromatolites are layered mounds, columns, and sheet-like sedimentary rocks that were originally formed by the growth of layer upon layer of cyanobacteria, a single-celled photosynthesizing microbe.

Fossilized stromatolites provide records of ancient life on Earth. Lichen stromatolites are a proposed mechanism of formation of some kinds of layered rock structure that are formed above water, where rock meets air, by repeated colonization of the rock by endolithic lichens.

Stromatolites are layered biochemical accretionary structures formed in shallow water by the trapping, binding and cementation of sedimentary grains by biofilms — microbial mats — of microorganisms, especially cyanobacteria. They exhibit a variety of forms and structures, or morphologies, including conical, stratiform, branching, domal, and columnar types. Stromatolites occur widely in the fossil record of the Precambrian, the earliest part of Earth's history, but are rare today. 

Very few ancient stromatolites contain fossilized microbes. While features of some stromatolites are suggestive of biological activity, others possess features that are more consistent with abiotic (non-biological) precipitation. Finding reliable ways to distinguish between biologically formed and abiotic stromatolites is an active area of research in geology. 

Some Archean rock formations show macroscopic similarity to modern microbial structures, leading to the inference that these structures represent evidence of ancient life, namely stromatolites. However, others regard these patterns as being due to natural material deposition or some other abiogenic mechanism. Scientists have argued for a biological origin of stromatolites due to the presence of organic globule clusters within the thin layers of the stromatolites, of aragonite nanocrystals — both features of current stromatolites — and because of the persistence of an inferred biological signal through changing environmental circumstances.

Sunday, 23 August 2020

NEUTRINOS AND PRECIOUS METALS

Deep inside the largest and deepest gold mine in North America scientists are looking for dark matter particles and neutrinos instead of precious metals.

The Homestake Gold Mine in Lawrence County, South Dakota was a going concern from about 1876 to 2001.

The mine produced more than forty million troy ounces of gold in its one hundred and twenty-five-year history, dating back to the beginnings of the Black Hills Gold Rush. 

To give its humble beginnings a bit of context, Homestake was started in the days of miners hauling loads of ore via horse and mule and the battles of the Great Sioux War. Folk moved about via horse-drawn buggies and Alexander Graham Bell had just made his first successful telephone call. Wyatt Earp was working in Dodge City, Kansas (he had yet to get the heck outta Dodge) and Mark Twain was in the throes of publishing “The Adventures of Tom Sawyer.”  — Ooh, and Thomas Edison had just opened his first industrial research lab in Menlo Park.

The mine is part of the Homestake Formation, an Early Proterozoic layer of iron carbonate and iron silicate that produces auriferous greenschist gold. What does all that geeky goodness mean? If you were a gold miner it would be music to your ears. They ground down that schist to get the glorious good stuff and made a tiny wee sum doing so. But then gold prices levelled off — from 1997 ($287.05) to 2001 ($276.50) — and rumblings from the owners started to grow. They bailed in 2001, ironically just before gold prices started up again.

But back to 2001, that levelling saw the owners look to a new source of revenue in an unusual place. One they had explored way back in the 1960s in a purpose-built underground laboratory that sounds more like something out of a science fiction book. The brainchild of chemist and astrophysicists, John Bahcall and Raymond Davis Jr. from the Brookhaven National Laboratory in Upton, New York, the laboratory was used to observe solar neutrinos, electron neutrinos produced by the Sun as a product of nuclear fusion.

Davis had the ingenious idea to use 100,000 gallons of dry-cleaning solvent, tetrachloroethylene, with the notion that neutrinos headed to Earth from the Sun would pass through most matter but on very rare occasions would hit a chlorine-37 atom head-on turning it to argon-37. His experiment was a general success, detecting electron neutrinos,  though his technique failed to sense two-thirds of the number predicted. In particle physics, neutrinos come in three types: electron, muon and tau. Think yellow, green, blue. What Davis had failed to initially predict was the neutrino oscillation en route to Earth that altered one form of neutrino into another. Blue becomes green, yellow becomes blue... He did eventually correct this wee error and was awarded the Nobel Prize in Physics in 2002 for his efforts.

Though Davis’ experiments were working, miners at Homestake continued to dig deep for ore in the belly of the Black Hills of western South Dakota for almost another forty years. As gold prices levelled out and ore quality dropped the idea began to float to repurpose the mine as a potential site for a new Deep Underground Engineering Laboratory (DUSEL).

A pitch was made and the National Science Foundation awarded the contract to Homestake in 2007.  The mine is now home to the Deep Underground Neutrino Experiment (DUNE) using DUSEL and Large Underground Xenon to look at both neutrinos and dark particle matter. It is a wonderful re-purposing of the site and one that few could ever have predicted. Well done, Homestake. The future of the site is a gracious homage to the now-deceased Davis. He would likely be delighted to know that his work continues at Homestake and our exploration of the Universe with it.

Friday, 21 August 2020

MIGUASHA BOTHRIOLEPIS CANADENSIS

A stunning replica of Bothriolepis canadensis from Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada.

Over the past 170 years, the Late Devonian Miguasha biota from eastern Canada has yielded a diverse aquatic assemblage including 20 species of lower vertebrates (anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians), a more limited invertebrate assemblage, and a continental component including plants, scorpions and millipedes.

Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting. Over 18,000 fish specimens have been recovered showing various modes of fossilization, including uncompressed material and soft-tissue preservation. Most vertebrates are known from numerous, complete, articulated specimens. Exceptionally well-preserved larval and juvenile specimens have been identified for 14 out of the 20 species of fishes, allowing growth studies. Numerous horizons within the Escuminac Formation are now interpreted as either Konservat– or Konzentrat–Lagerstätten.

This replica was purchased at the Musée d'Histoire Naturelle, Miguasha (MHNM) and is in the collection of the deeply awesome John Fam.

Great Canadian Lagerstätten 4. The Devonian Miguasha Biota (Québec): UNESCO World Heritage Site and a Time Capsule in the Early History of Vertebrates, Richard Cloutier, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada, G5L 3A1, richard_cloutier@uqar.ca, http://dx.doi.org/10.12789/geocanj.2013.40.008

Wednesday, 19 August 2020

ZEACRINITES: CRINOID

This lovely specimen is Zeacrinites magnoliaeformis, an Upper Mississippian-Chesterian crinoid found by Keith Metts in the Glen Dean Formation, Grayson County, Kentucky, USA.

Crinoids are unusually beautiful and graceful members of the phylum Echinodermata. They resemble an underwater flower swaying in an ocean current. But make no mistake they are marine animals. Picture a flower with a mouth on the top surface that is surrounded by feeding arms. Awkwardly, add an anus right beside that mouth. That's him!

Crinoids with root-like anchors are called Sea Lilies. They have graceful stalks that grip the ocean floor. Those in deeper water have longish stalks up to 3.3 ft or a meter in length.

Then there are other varieties that are free-swimming with only vestigial stalks. They make up the majority of this group and are commonly known as feather stars or comatulids. Unlike the sea lilies, the feather stars can move about on tiny hook-like structures called cirri. It is this same cirri that allows crinoids to latch to surfaces on the seafloor. Like other echinoderms, crinoids have pentaradial symmetry. The aboral surface of the body is studded with plates of calcium carbonate, forming an endoskeleton similar to that in starfish and sea urchins.

These make the calyx somewhat cup-shaped, and there are few, if any, ossicles in the oral (upper) surface called a tegmen. It is divided into five ambulacral areas, including a deep groove from which the tube feet project, and five interambulacral areas between them. The anus, unusually for echinoderms, is found on the same surface as the mouth, at the edge of the tegmen.

Crinoids are alive and well today. They are also some of the oldest fossils on the planet. We have lovely fossil specimens dating back to the Ordovician.

Tuesday, 18 August 2020

MEET ARAUCARIA FAMII

In 1993, John Fam and his father were collecting from outcrops exposed at the Motorcross track near Brannan Lake in Nanaimo, British Columbia, Canada when something unusual caught John's eye. 

This was a weekly father-son event to get outdoors and explore nature and dig into our ancient world. 

The site is one of the classic Vancouver Island fossil localities with outcrops from the Santonian-Maastrichtian, Upper Cretaceous Haslam Formation. Here we find well-preserved nautiloids and ammonites — Cadoceras, Pseudoschloenbachia, Epigoniceras — the bivalves — Inoceramus, Sphenoceramus — gastropods, and classic Nanaimo Group decapods — Hoploparia and Linuparus

On rare occasions, we find fossil fruit and seeds which tell the story of the terrestrial history of Vancouver Island. And it was one of these seeds that John unearthed back in 1993. On this particular day, John picked up a tasty looking concretion whose shape foretold the possibility of ancient life hidden inside. Always one with a keen eye, he carefully packed it up and took it home. 

The next day, he cracked it open and a beautiful fossil cone met his eyes. He had found a cone from an ancient family of coniferous trees. 

Knowing it was unusual and important, he kept it safe and eventually met and donated it to Dr. Ruth Stockey, a palaeontologist who specializes in plants and seeds. 

Their collaboration just came full circle — the seed was indeed a new species and was published today in the American Journal of Botany. Meet Araucaria famii. Congratulations to Ruth and team for studying and writing up this important find. A huge congrats to John and his amazing father for their curiosity, collaboration and providing role-models for us all. 

John kept a few of the fossilized seeds & was gifted a cast of the cone from Stockey. His seeds might have cool embryos in them, you never know.  It sure would be nice to look at the x.s. to see for sure how many cotyledons are inside. These are the embryonic leaves in seed-bearing plants, one or more of which are the first leaves to appear from a germinating seed. 

It sure looked like two. Ruth Stockey & team are on it. I’m sure they’ll update us when they know for sure.

I was recently on a fossil field trip with John and it warmed my heart to see him, now a father himself, sharing that passion with his eldest son. We may well have more Famii's to look forward to. I'm thinking we will. 

Here is the link to this paper: 

https://www.researchgate.net/publication/343186795_Diversification_of_crown_group_Araucaria_the_role_of_Araucaria_famii_sp_nov_in_the_mid-Cretaceous_Campanian_radiation_of_Araucariaceae_in_the_Northern_Hemisphere

Monday, 17 August 2020

FIRST BC DINOSAUR WEST OF THE ROCKIES

This dapper fellow is a pine needle and horsetail connoisseur. He's a hadrosaurus — also known as "duck-billed" dinosaurs. They were a very successful group of plant-eaters that thrived throughout western Canada during the late Cretaceous, some 70 to 84 million years ago.

This beautiful specimen graces the back galleries of the Courtenay and District Museum on Vancouver Island, British Columbia, Canada. I was very fortunate to have a tour this past summer with the deeply awesome Mike Trask joined by the lovely Lori Vesper. 

The museum houses an extensive collection of palaeontological and archaeological material found on Vancouver Island, many of which have been donated by the Vancouver Island Palaeontological Society.

Hadrosaurs lived as part of a herd, dining on pine needles, horsetails, twigs and flowering plants. They are ornithischians — an extinct clade of mainly herbivorous dinosaurs characterized by a pelvic structure superficially similar to that of birds. They are close relatives and possibly descendants of the earlier iguanodontid dinosaurs. They had slightly webbed, camel-like feet with pads on the bottom for cushioning and perhaps a bit of extra propulsion in water. They were primarily terrestrial but did enjoy feeding on plants near and in shallow water. There had a sturdy build with a stiff tail and robust bone structure. 

At their emergence in the fossil record, they were quite small, roughly three meters long. That's slightly smaller than an American bison. They evolved during the Cretaceous with some of their lineage reaching up to 20 meters or 65 feet.

Hadrosaurs are very rare in British Columbia but a common fossil in our provincial neighbour, Alberta, to the east. Here, along with the rest of the world, they were more abundant than sauropods and a relatively common fossil find. They were common in the Upper Cretaceous of Europe, Asia, and North America.

There are two main groups of Hadrosaurs, crested and non-crested. The bony crest on the top of the head of the hadrosaurs was hollow and attached to the nasal passages. It is thought that the hollow crest was used to make different sounds. These sounds may have signalled distress or been the hadrosaur equivalent of a wolf whistle used to attract mates. Given their size it would have made for quite the trumpeting sound.

Dan Bowen, Chair of the Vancouver Island Palaeontological Society, shared the photo you see here of the first partly articulated dinosaur from Vancouver Island ever found. The vertebrate photo and illustration are from a presentation by Dr. David Evans at the 2018 Paleontological Symposium in Courtenay.  

The research efforts of the VIPS run deep in British Columbia and this new very significant find is no exception. A Hadrosauroid dinosaur is a rare occurrence and further evidence of the terrestrial influence in the Upper Cretaceous, Nanaimo Group, Vancouver Island — outcrops that we traditionally thought of as marine from years of collecting well-preserved marine fossil fauna.

The fossil bone material was found years ago by Mike Trask of the Vancouver Island Palaeontological Society. You may recall that he was the same fellow who found the Courtenay Elasmosaur on the Puntledge River.

Mike was leading a fossil expedition on the Trent River. While searching through the Upper Cretaceous shales, the group found an articulated mass of bones that looked quite promising.

Given the history of the finds in the area, the bones were thought to be from a marine reptile.

Since that time, we've found a wonderful terrestrial helochelydrid turtle, Naomichelys speciosa, but up to this point, the Trent had been known for its fossil marine fauna, not terrestrial. Efforts were made to excavate more of the specimen, and in all more than 25 associated vertebrae were collected with the help of some 40+ volunteers. Identifying fossil bone is a tricky business. Encased in rock, the caudal vertebrae were thought to be marine reptile in origin. Some of these were put on display in the Courtenay Museum and mislabeled for years as an unidentified plesiosaur.

In 2016, after years collecting dust and praise in equal measure, the bones were reexamined. They didn't quite match what we'd expect from a marine reptile. Shino Sugimoto, Fossil Preparator, Vertebrate Palaeontology Technician at the Royal Ontario Museum was called in to work her magic — painstakingly prepping out each caudal vertebrae from the block.

Once fully prepped, seemingly unlikely, they turned out to be from a terrestrial hadrosauroid. This is the second confirmed dinosaur from the Upper Cretaceous Nanaimo Group. The first being a theropod from Sucia Island. The partial left thigh bones the first dinosaur fossil ever found in Washington state.

Dr. David Evans, Temerty Chair in Vertebrate Palaeontology, Department of Natural History, Palaeobiology from the Royal Ontario Museum, confirmed the ID and began working on the partial duck-billed dinosaur skeleton to publish on the find.

Now fully prepped, the details of this articulated Hadrosauriod caudal vertebrae come to light. We can see the prominent chevron facets indicative of caudal vertebrae with it's a nice hexagonal centrum shape on anterior view.

There are well-defined long, raked neural spines that expand distally — up and away from the acoelous centrum. 

Between the successive vertebrae, there would likely have been a fibrocartilaginous intervertebral body with a gel-like core —  the nucleus pulposus — which is derived from the embryonic notochord. This is a handy feature in a vertebrate built as sturdily as a hadrosaur. Acoelous vertebrae have evolved to be especially well-suited to receive and distribute compressive forces within the vertebral column.

This fellow has kissing cousins over in the state of New Jersey where this species is the official state fossil. The first of his kind was found by John Estaugh Hopkins in New Jersey back in 1838. Since that time, we've found many hadrosaurs in Alberta, particularly the Edmontosuaurs, another member of the subfamily Hadrosaurine.

In 1978, Princeton University found fifteen juvenile hadrosaurs, Maiasaura ("good mother lizard") on a paleontological expedition to the Upper Cretaceous, Two Medicine Formation of Teton County in western Montana. 

Their initial finds of several small skeletons had them on the hunt for potential nests — and they found them complete with wee baby hatchlings!

Photo One: Fossil Huntress / Heidi Henderson, VIPS

Photo Two / Sketch Three: Danielle Dufault, Palaeo-Scientific Ilustrator, Research Assistant at the Royal Ontario Museum, Host of Animalogic. 

The vertebrate photo and illustration were included in a presentation by Dr. David Evans at the 2018 BCPA Paleontological Symposium in Courtenay, British Columbia, Canada.

Photo Four: Illustration by the talented Greer Stothers, Illustrator & Natural Science-Enthusiast.

Sunday, 16 August 2020

ATURIA ANGUSTATA: MIOCENE NAUTILOID

Aturia angustata, Lower Miocene, WA
This lovely Lower Miocene nautiloid is Aturia angustata collected on the foreshore near Clallam Bay, Olympic Peninsula, northwestern Washington. 

Aturia is an extinct genus of Paleocene to Miocene nautiloid within Aturiidae, a monotypic family, established by Campman in 1857 for Aturia (Bronn, 1838), and is included in the superfamily Nautilaceae (Kümmel,  1964).

There are seven living nautiloid species in two genera: Nautilus pompilius, N. macromphalus, N. stenomphalus, N. belauensis, and the three new species being described from Samoa, Fiji, and Vanuatu (Ward et al.). We have specimens of fossil nautiloids dating to the Turonian of California, and possibly the Cenomanian of Australia. There has also been a discovery of what might be the only known fossil of Allonautilus (Ward and Saunders, 1997), from the Nanaimo Group of British Columbia, Canada.

Aturia in the Collection of Rick Ross, VIPS
The exquisite shell preservation of many Nanaimo nautilids has opened up a lens into paleotemperatures and accurate Nitrogen isotope analyses. 

Nautilus and all other known Cretaceous through Paleogene nautiloids were shallow water carnivores. We may see their shells as beautiful bits of art and science today, but they were seen in our ancient oceans as small yet mighty predators. Preferring to dine on shrimp, crab, fish and on occasion, a friendly cousin nautiloid to two.

Aturia lived in cooler water in the Cenozoic, preferring it over the warmer waters chosen by their cousins. Aturia, are commonly found as fossils from Eocene and Miocene outcrops. That record ends with their extinction in the late Miocene. This was a fierce little beast with jaws packed with piranha-like teeth. They grew at least twice that of the largest known Nautilus living today. 

Aturia is characterized by a smooth, highly involute, discoidal shell with a complex suture and subdorsal siphuncle. The shell of Aturia is rounded ventrally and flattened laterally; the dorsum is deeply impressed. The suture is one of the most complex within the subclass Nautiloidea. Of all the nautiloids, he may have been able to go deeper than his brethren.

Nautiloids are known for their simple suturing in comparison to their ammonite cousins. This simplicity of design limited their abilities in terms of withstanding the water pressure experienced when several atmospheres below the sea. Nautiloids were not able to compete with their ammonite cousins in this regard. 

Instead of elaborate and complex sutures capable of withstanding the pressures of the deep, nautiloids have simpler sutures that would have them enfold on themselves and crush at depth.  

Aturia angustata; Rick Ross Collection
It has a broad flattened ventral saddle, narrow pointed lateral lobes, broad rounded lateral saddles, broad lobes on the dorso-umbilical slopes, and a broad dorsal saddle divided by a deep, narrow median lobe. 

The siphuncle is moderate in size and located subdorsally in the adapical dorsal flexure of the septum. Based on the feeding and hunting behaviours of living nautiluses, Aturia most likely preyed upon small fish and crustaceans. 

I've found a few of these specimens along the beaches of Clallam Bay and nearby in a local clay quarry. I've also seen calcified and chalcedony — microcrystalline quartz — agatized beauties of this species collected from river sites within the Olympic Peninsula range. In the bottom photos, you can see Aturia from Washington state and one (on the stand on the left) from Oregon, USA. These beauties are in the collections of the deeply awesome Rick Ross, Vancouver Island Palaeontological Society.

References: Ward, P; Haggart, J; Ross, R; Trask, P; Beard, G; Nautilus and Allonautilus in the Nanaimo Group, and in the modern oceans; 12th British Columbia Paleontological Symposium, 2018, Courtenay, abstracts; 2018 p. 10-11

Saturday, 15 August 2020

DEVONIAN CORAL

Devonian Coral, Kootenay Rockies, BC

This fellow is a coral from a Devonian reef site near the Bull River in the Kootenay Rockies. 

Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically live in compact colonies of many identical individual polyps. Corals species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

A coral group is a colony of myriad genetically identical polyps. Each polyp is a sac-like animal typically only a few millimetres in diameter and a few centimetres in height. A set of tentacles surround a central mouth opening. Each polyp excretes an exoskeleton near the base. Over many generations, the colony thus creates a skeleton characteristic of the species which can measure up to several meters in size. Individual colonies grow by asexual reproduction of polyps. 

Corals also breed sexually by spawning: polyps of the same species release gametes simultaneously overnight, often around a full moon. Fertilized eggs form planulae, a mobile early form of the coral polyp which when mature settles to form a new colony.

Modern coral reefs begin to form when free-swimming coral larvae attach to submerged rocks or other hard surfaces along the edges of islands or continents. As the corals grow and expand, reefs take on one of three major characteristic structures — fringing, barrier or atoll. Back in the Devonian, reefs were formed from corals and stromatoporoids which formed on top of carbonate banks.

Modern Thriving Coral Community
Corals reappeared during the Devonian period, around 410 million years ago. It is around this time that they began to form extensive reef systems. 

These early coral reefs were predominantly composed of coral-like stromatoporoids (reef-forming sponges), tabulate corals (mounds, branches, and organ shapes), rugose corals (horn-shaped), and predecessors of the modern-day coralline algae (encrusting multi-coloured algae seen on rock surfaces). 

It was towards the end of this period that scleractinian or ‘stony’ corals first appeared that populate coral reefs today. 

350 million years ago corals briefly disappeared from the geological record. The reason for this is not clear but evidence points towards rapid fluctuations in sea levels and a rapid reduction in atmospheric carbon dioxide. It has been a long stretch of good conditions for corals but with global warming, we are beginning to alter our oceanic conditions and not to the liking of our beautiful corals.



Friday, 14 August 2020

EAGER FORMATION AT KTUNAXA NATION

There is a small roadcut exposure of the Eager Formation on the Ktunaxa Nation lands. The Lower Cambrian Eager Formation outcrops at a few localities close to Fort Steele, many known since the early 1920s, and up near Mount Grainger near the highway. 

This particular outcrop is on First Nations land. We wanted to take photographs of the site and be respectful of who live on and own the land now. This is the Ktunaxa traditional territory and while their history does not intersect directly with the fauna who lived here half a billion years ago, their boundaries need to be respected.

We stopped for about 10 minutes to photograph the exposures. I hopped out to look at a few pieces and photograph this specimen. The Olenellus trilobite bits & pieces were moults & remains that had a slight deformation or warping — perhaps laid down in a seabed with high action, active turbidity.

Olenellus are a genus of trilobites — extinct arthropods  — common in but restricted to Early Cambrian rocks some 542 million to 521 million years old and thus a useful guide fossil for the Early Cambrian. Olenellus had a well-developed head, large and crescentic eyes, and a poorly developed, small tail. The cephalon you see here was likely a moult as this particular specimen grew and shed his snug earlier head shield.