Tuesday, 11 May 2021
GIANT TORTOISES & THE ISLAND RULE
Food is often restrictive or unvaried and predators are often reduced or all together absent. We see the evolutionary impact in the Giant tortoises of the Aldabra Atoll and Fregate Island in the Seychelles and Galápagos Islands in Ecuador.
They belong to an ancient group of reptiles, appearing about 250 million years ago and evolving to their large size by the Late Cretaceous, 70 or 80 million years ago. And they are big, weighing as much as 417 kg (919 lb) and can grow to be 1.3 m (4 ft 3 in) long. The Galapagos giant tortoise is a wee bit smaller, weighing 215 kg (475 lb) with the males generally outweighing the females. They snack on plants and some have a slight curve to the shell behind their heads to allow them to reach up a wee bit higher to reach more food. The females lay their eggs in a pit dug specifically for this purpose. Once the hatchlings have incubated, they dig themselves out. I'm sure you've seen the adorable photos or videos of them hatching then making their way to the sea.
Monday, 10 May 2021
BALEARITES OF MOROCCO
![]() |
| Collection of José Juárez Ruiz. The specimen is 202 mm. |
Balearites, with their planispiral shell (conch) and compressed whorls, is an extinct ancyloceratin genus ammonite in the family Crioceratitidae, suborder Ancyloceratina.
We find fossils of this genera in Romania, Slovakia, Austria, France, Spain, Switzerland, Hungary, Italy, Russia, Bulgaria and Morocco. This specimen is in the collection of José Juárez Ruiz and is roughly 202 mm. If you find this lovely interesting, you'll enjoy reading more on this genus and others in Arkell, W. J. et al., 1957. Mesozoic Ammonoidea, Treatise on Invertebrate Paleontology Part L, Mollusca 4. 1957.
Sunday, 9 May 2021
GREEK MYTHOLOGY AND ANCIENT BONES
![]() |
| Tetralophodon |
Most of these large beasts had four tusks and likely a trunk similar to modern elephants. They were creatures of legend, inspiring myths and stories of fanciful creatures to the first humans to encounter them.
Beyond our Neanderthal friends, one such fellow was Quintus Sertorius, a Roman statesman come general, who grew up in Umbria. Born into a world at war just two years before the Romans sacked Corinth to bring Greece under Roman rule, Quintus lived much of his life as a military man far from his native Norcia. Around 81 BC, he travelled to Morocco, the land of opium, massive trilobites and the birthplace of Antaeus, the legendary North African ogre who was killed by the Greek hero Heracles.
The locals tell a tale that Quintus requested proof of Antaeus, hard evidence he could bring back to Rome to support their tales so they took him to a mound near Tingis, the ancient name for Tangier, Morocco. It was here they unearthed the bones of an extinct elephantoid, Tetralophodon.
Tetralophodon bones are large and skeletons singularly impressive. Impressive enough to be taken for something else entirely. By all accounts, these proboscidean remains were that of the mythical giant, Antaeus, son of the gods Poseidon and Gaea and were thus reported back to Rome as such. Antaeus went on to marry the goddess Tinge and it is from her, in part, that Tangier in northwestern Morocco gets its name. Together, Antaeus and Tinge had a son, Sophax. He is credited with having the North Africa city take her name. Rome was satisfied with the find. It would be hundreds of years later before the bones true ancestry was known and in that time, many more wonderful ancient proboscideans remains were unearthed..
Saturday, 8 May 2021
EIFELIAN PARALEJURUS
It was the colour of this amazing trilobite that captured the eye of David Appleton in whose collection it now resides. He is an avid collector and coming into his own as a macro photographer. I have shared three of his delightful photos for you here.
It initially thought that the gold we see here was added during prep, particularly considering the colouration of the matrix, but macro views of the surface show mineralization and the veins running right through the specimen into the matrix. There is certainly some repairs but that is common in the restoration of these specimens. Many of the trilobites I have seen from Morocco have bronze on black colouring but not usually this pronounced. Even so, there is a tremendous amount of fine anatomy to explore and enjoy in this wonderfully preserved specimen.
Paralejurus is a genus of trilobite in the phylum Arthropoda from the Late Silurian to the Middle Devonian of Africa and Europe. These lovelies grew to be up to nine centimetres, though the fellow you see here is a wee bit over half that size at 5.3 cm.
Paralejurus specimens are very pleasing to the eye with their long, oval outline and arched exoskeletons.
Their cephalon or head is a domed half circle with a smooth surface. The large facet eyes have very pleasing crescent-shaped lids. You can see this rather well in the first of the photos here. The detail is quite remarkable.
As you move down from his head towards the body, there is an almost inconspicuous occipital bone behind the glabella in the transition to his burnt bronze thorax.
The body or thorax has ten narrow segments with a clearly arched and broad axial lobe or rhachis. The pygidium is broad, smooth and strongly fused in contrast to the genus Scutellum in the family Styginidae, which has a pygidium with very attractive distinct furrows that I liken to the look of icing ridges on something sweet — though that may just be me and my sweet tooth talking. In Paralejurus, they look distinctly fused — or able to fuse — to add posterior protection against predators with both the look and function of Roman armour.
In Paralejurus, the axillary lobe is rounded off and arched upwards. It is here that twelve to fourteen fine furrows extend radially to complete the poetry of his body design.
Trilobites were amongst the earliest fossils with hard skeletons and they come in many beautiful forms. While they are extinct today, they were the dominant life form at the beginning of the Cambrian.As a whole, they were amongst some of the most successful of all early animals — thriving and diversifying in our ancient oceans for almost 300 million years. The last of their brethren disappeared at the end of the Permian — 252 million years ago. Now, we enjoy their beauty and the scientific mysteries they reveal about our Earth's ancient history.
Photos and collection of the deeply awesome David Appleton. Specimen: 5.3 cm.
Friday, 7 May 2021
LEANCHOILIA: CHENGJIANG
Leanchoilia is a megacheiran arthropod who we first met from Cambrian deposits in the Burgess Shales of Canada where they make up about 0.1% of the fauna of the Greater Phyllopod beds. These distinctive predatory arthropods are about 5 centimetres (2.0 in) in length with whip-like feelers mounted on frontal arm-like appendages. You can see the amazing level of detail in the preservation here. If we are very lucky, we sometimes from their internal organs preserved in three dimensions which adds a whole host of data to explore.
Several species are tentatively accepted today: the type species L. superlata, L. obesa and the recently revalidated and poetically named, L. persephone. Naming is a tricky business when we are dealing with fossilized specimens as ontogeny and sexual dimorphism can confuse the issue. It is not always clear if we are seeing a new species, a juvenile or noting differences between mature males and females.
Specimen: 5.2 cm. Photo and collection of York Yuxi Wang.
References:
"Burgess Shale: Leanchoilia superlata (an arthropod)". Smithsonian Institution National Museum of Natural History. Retrieved 6 July 2017.
Nicholas J. Butterfield (2002). "Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils". Paleobiology. 28 (1): 155–171. doi:10.1666/0094-8373(2002)028<0155:LGATIO>2.0.CO;2.
Brigitte Schoenemann & Euan N. K. Clarkson (2012). "The eyes of Leanchoilia". Lethaia. 45 (4): 524–531. doi:10.1111/j.1502-3931.2012.00313.x.
Diego C. García-Bellido & Desmond Collins (2007). "Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada". Palaeontology. 50 (3): 693–709. doi:10.1111/j.1475-4983.2007.00649.x.
Caron, Jean-Bernard; Jackson, Donald A. (October 2006). "Taphonomy of the Greater Phyllopod Bed community, Burgess Shale". PALAIOS. 21 (5): 451–65. doi:10.2110/palo.2003.P05-070R. JSTOR 20173022.
Thursday, 6 May 2021
THE LURE OF THE SEA
Many of these once land-dwelling animals returned to the sea throughout evolutionary history. We have beautifully documented cases from amphibians, reptiles, birds and mammals from over 30 different lineages over the past 250 million years.
Some dipped a toe or two into freshwater ponds, but make no mistake, they were terrestrial. Each of these animals had ancestors that tried out the sea and decided to stay. They evolved and employed a variety of adaptations to meet their new saltwater challenges. Some adapted legs as fins, others became more streamlined, and still, others developed specialized organs to extract dissolved oxygen from the water through their skin or gills. The permutations are endless.
Returning to the sea comes with a whole host of benefits but some serious challenges as well. Life at sea is very different from life on land. Water is denser than air, impacting how an animal moves, sees and hears. More importantly, it impacts an air-breathing animal's movement on a pretty frequent basis. If you need air and haven't evolved gills, you need to surface frequently. Keeping your body temperature at a homeostatic level is also a challenge as water conducts heat much better than air. Even with all of these challenges, the lure of additional food sources and freedom of movement kept those who tried the sea in the sea and they evolved accordingly.
Most major animal groups appear for the first time in the fossil record half a billion years ago. We call this flourishing of species the Cambrian Explosion. While this was a hugely intense period of species radiation, the evolutionary origins of animals are likely to be significantly older. About 700 million years ago the Earth was covered in ice and snow. This was an ice age so intense we refer to this time in our ancient history as Snowball Earth. Once that ice receded, it exposed rocks that contained a variety of weird and wonderful fossils that speak to ancient animals that are only now being studied.
Dr Frankie Dunn, a palaeontologist and an Early Career Research Fellow at the Oxford University Museum of Natural History and Merton College is one of the folks who are examining this early history of some of our first animals. Her research focuses on the origin and early evolution of animals and particularly on the fossil record of the late Ediacaran Period (570 – 540 million years ago). Dr Dunn's research is exploring ancient species like the long-extinct Rangeomorpha to help understand how animal body plans evolved in deep time well before the divergence of the extant (living) animal lineages.
Wednesday, 5 May 2021
VERTEBRATES AND INVERTEBRATES
So, which lucky ducks evolved one? Well, ducks for one. Warm-blooded birds and mammals cheerfully claim those bragging rights. They're joined by our cold-blooded, ectothermic friends, the fish, amphibians and reptiles. All these diverse lovelies share this characteristic.
And whether they now live at sea or on land, all of these lineages evolved from a marine organism somewhere down the line, then went on to develop a notochord and spinal column. Notochords are flexible rods that run down the length of chordates and vertebrates. They are handy adaptations for muscle attachment, helping with signalling and coordinating the development of the embryonic stage. The cells from the notochord play a key role in the development of the central nervous system and the formation of motor neurons and sensory cells. Alas, we often take our evolution for granted.
Let's take a moment to appreciate just how marvellous this evolutionary gift is and what it allows us to do. Your backbone gives your body structure, holds up that heavy skull of yours and connects your tasty brain to your body and organs. Eating, walking, fishing, hunting, your morning yoga class, are all made possible because of this adaptation. Pick pretty near anything you love to do and it is only possible because of your blessed spine.
And it sets us apart from our invertebrate friends.
While seventy thousand may seem like a large number, it represents less than three to five per cent of all described animal species. The rest is made up of the whopping 97%'ers, our dear invertebrates who include the arthropods (insects, arachnids, crustaceans, and myriapods), molluscs (our dear chitons, snails, bivalves, squid, and octopus), annelids (the often misunderstood earthworms and leeches), and cnidarians (our beautiful hydras, jellyfish, sea anemones, and corals).
You will have noticed that many of our invertebrate friends occur as tasty snacks. Having a backbone provides a supreme advantage to your placement in the food chain. Not always, as you may include fish and game on your menu. But generally, having a backbone means you're more likely to be holding the menu versus being listed as an appetizer. So, enjoy your Sunday 'downward dog' and thank your backbone for the magical gift it is.
Monday, 3 May 2021
FRACTAL BUILDING: AMMONITES
![]() |
| Argonauticeras besairei, Collection of José Juárez Ruiz. |
Ammonites were predatory, squidlike creatures that lived inside coil-shaped shells.
Like other cephalopods, ammonites had sharp, beak-like jaws inside a ring of squid-like tentacles that extended from their shells. They used these tentacles to snare prey, — plankton, vegetation, fish and crustaceans — similar to the way a squid or octopus hunt today.
Catching a fish with your hands is no easy feat, as I'm sure you know. But the Ammonites were skilled and successful hunters. They caught their prey while swimming and floating in the water column. Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube. By pushing air in or out, they were able to control their buoyancy in the water column.
They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.
They were a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids — octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species.
The Ammonoidea can be divided into six orders:
- Agoniatitida, Lower Devonian - Middle Devonian
- Clymeniida, Upper Devonian
- Goniatitida, Middle Devonian - Upper Permian
- Prolecanitida, Upper Devonian - Upper Triassic
- Ceratitida, Upper Permian - Upper Triassic
- Ammonitida, Lower Jurassic - Upper Cretaceous
If they are ceratitic with lobes that have subdivided tips; giving them a saw-toothed appearance and rounded undivided saddles, they are likely Triassic. For some lovely Triassic ammonites, take a look at the specimens that come out of Hallstatt, Austria and from the outcrops in the Humboldt Mountains of Nevada.
![]() |
| Hoplites bennettiana (Sowby, 1826). |
One of my favourite Cretaceous ammonites is the ammonite, Hoplites bennettiana (Sowby, 1826). This beauty is from Albian deposits near Carrière de Courcelles, Villemoyenne, near la région de Troyes (Aube) Champagne in northeastern France.
At the time that this fellow was swimming in our oceans, ankylosaurs were strolling about Mongolia and stomping through the foliage in Utah, Kansas and Texas. Bony fish were swimming over what would become the strata making up Canada, the Czech Republic and Australia. Cartilaginous fish were prowling the western interior seaway of North America and a strange extinct herbivorous mammal, Eobaatar, was snuffling through Mongolia, Spain and England.
In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. Once you get to know them, ammonites in their various shapes and suturing patterns make it much easier to date an ammonite and the rock formation where is was found at a glance.
Ammonites first appeared about 240 million years ago, though they descended from straight-shelled cephalopods called bacrites that date back to the Devonian, about 415 million years ago, and the last species vanished in the Cretaceous–Paleogene extinction event.
They were prolific breeders that evolved rapidly. If you could cast a fishing line into our ancient seas, it is likely that you would hook an ammonite, not a fish. They were prolific back in the day, living (and sometimes dying) in schools in oceans around the globe. We find ammonite fossils (and plenty of them) in sedimentary rock from all over the world.
In some cases, we find rock beds where we can see evidence of a new species that evolved, lived and died out in such a short time span that we can walk through time, following the course of evolution using ammonites as a window into the past.
For this reason, they make excellent index fossils. An index fossil is a species that allows us to link a particular rock formation, layered in time with a particular species or genus found there. Generally, deeper is older, so we use the sedimentary layers rock to match up to specific geologic time periods, rather the way we use tree-rings to date trees. A handy way to compare fossils and date strata across the globe.
https://www.nature.com/articles/srep33689?fbclid=IwAR1BhBrDqhv8LDjqF60EXdfLR7wPE4zDivwGORTUEgCd2GghD5W7KOfg6Co#citeas
Photo: Hoplites Bennettiana from near Troyes, France. Collection de Christophe Marot
Sunday, 2 May 2021
GORGONS OF THE GREAT KAROO
I learned about the Karoo, and indeed the Gorgons, by a book of the same name by the deeply awesome Peter Ward. His introduction to what life and fieldwork are like in the arid, inhospitable ancestral home of the Gorgons in South Africa made me laugh out loud. It is a highly enjoyable read. The Great Karoo was formed in a vast inland basin 320 million years ago, at a time when the part of Gondwana which would eventually become Africa lay over the South Pole.
The Karoo records a wonderful time in our evolutionary history when the world was inhabited by interesting amphibians and mammal-like reptiles — including the apex predators of the day, the Gorgons.
The link below will take you to the Fossil Huntress Podcast where you can travel back in time to visit the Great Karoo with me. Here's the link: https://anchor.fm/.../The-Great-Karoo-of-South-Africa...
Photo: National Geographic Society
Saturday, 1 May 2021
ACANTHOHOPLITES BIGOURETI
Geologically, the Caucasus Mountains belong to a system that extends from southeastern Europe into Asia and is considered a border between them. The Greater Caucasus Mountains are mainly composed of Cretaceous and Jurassic rocks with the Paleozoic and Precambrian rocks in the higher regions.
Some volcanic formations are found throughout the range. On the other hand, the Lesser Caucasus Mountains are formed predominantly of the Paleogene rocks with a much smaller portion of the Jurassic and Cretaceous rocks.
The evolution of the Caucasus began from the Late Triassic to the Late Jurassic during the Cimmerian orogeny at the active margin of the Tethys Ocean while the uplift of the Greater Caucasus is dated to the Miocene during the Alpine orogeny.
The Caucasus Mountains formed largely as the result of a tectonic plate collision between the Arabian plate moving northwards with respect to the Eurasian plate. As the Tethys Sea was closed and the Arabian Plate collided with the Iranian Plate and was pushed against it and with the clockwise movement of the Eurasian Plate towards the Iranian Plate and their final collision, the Iranian Plate was pressed against the Eurasian Plate.
As this happened, the rocks that had been deposited in this basin from the Jurassic to the Miocene were folded to form the Greater Caucasus Mountains. This collision also caused the uplift and the Cenozoic volcanic activity in the Lesser Caucasus Mountains.
The preservation of this Russian specimen is outstanding. Acanthohoplites bigoureti are also found in Madagascar, Mozambique, in the Rhone-Alps of France and the Western High Atlas Mountains and near Marrakech in Morocco. This specimen measures 55mm and is in the collection of the deeply awesome Emil Black.
Friday, 30 April 2021
ANAHOPLITES PLANUS OF FRANCE
Anahoplites is now included in the subfamily Anahoplitinae and separated from the Hoplitinae where it was placed in the older in the 1957 edition of the Treatise on Invertebrate Paleontology, Part L (Ammonoidea). Genera of the Hoplitinae tend to be more robust, with broader whorls and stronger ribs.
Anahoplites is found in Cretaceous (Middle to the Late Albian) deposits from England, through Europe, all the way to the Transcaspian Oblast region in Russia to the east of the Caspian Sea. The Aube department, named after the local river, is the type locality of the Albian stage (d'ORBIGNY, 1842).
![]() |
| A. planus from the French Coast |
This involute (113 mm) specimen shows evidence of cohabitation by some of his marine peers. We see two different bryozoa, an oyster and some serpulids making a living and leaving trace fossils on her flat sides. The top specimen was prepared with potase by José Juárez Ruiz of Spain.
The lovely Anahoplites planus you see here to the lower right was found by Bertus op den Dries on the French coast in Albian deposits near Wissant, P5 and measures in at 8 cm. This on edge view gives you a very good sense of the keel.
Thursday, 29 April 2021
FREE RESOURCES FOR TEACHERS AND STUDENTS
I have started to include the logo so you can know for sure it is okay to use. If I credit the photo to someone, you would need to ask them first before using it.
I also post over on the Fossil Huntress Facebook page and will begin putting together teaching sets by album of related content. It is mostly palaeontology, earth history, earth science and natural history. Feel free to use what works best for you and good luck!
Wednesday, 28 April 2021
GRAPTOLITES
The graptolites are now classed as hemichordates (phylum Hemichordata), a primitive group that probably shares a common ancestry with the vertebrates.
In life, many graptolites appear to have been planktonic, drifting freely on the surface of ancient seas or attached to floating seaweed by means of a slender thread. Some forms of graptolite lived attached to the seafloor by a root-like base. Graptolite fossils are often found in shales and slates. The deceased planktonic graptolites would sink down to and settle on the seafloor, eventually becoming entombed in the sediment and are thus well preserved.
Graptolite fossils are found flattened along the bedding plane of the rocks in which they occur. They vary in shape, but are most commonly dendritic or branching (such as Dictoyonema), saw-blade like, or "tuning fork" shaped, such as Didymograptus murchisoni.


















